SRG-76-30-8-14 eliminating K6,10

fgenerating all possible lengths of cycles on 20 vertices, ascending
order
types=1[]
for k in range(1,7):
d=[0]*k
m=int (11-3*k/2)
pp=m” (k-1)
for i in range (pp) :
ii=i
d[k-1]=20-3*k
for j in range(k-1):
d[j]l=int (ii) %int (m)
ii=ii//m
dlk-1]-=(k=3)*d[3]
if d[k-1]1>=0:
ii=3
res=|]
for j in range (k) :
ii+=d[]]
res.append (ii)
types.append(res)

#list of alternating 0Os and 1ls of given length
def alt gen(k):

alt = [1]1*k
for 1 in range ((k-1)/2+1):
alt[2*1]=0

return alt

#appending some info to res: pair of numbers of edges in the two
components, alternating sequence with duplications at given positions
#dups is a non-decreasing sequence of indexes, may be empty
def duplicate(res,dups,nn) :
if nn<=0:
return O
alt = alt gen(nn)
for 1 in range (len (dups)) :
alt.insert (it+dups([i],alt[i+tdups([i]])
x=0 #counter for consecutive 0s (cyclic)

yv=0 #1s
for i in range(len(alt)-1):
if alt[i]==0 and alt[i+l]==
x+=1
if alt[i]==1 and alt[i+l]==1:
y+=1
if alt[0]==0 and alt[len(alt)-1]==0:

x+=1



if alt[0]==1 and alt[len(alt)-1]==1:
y+=1
if x>3 or y>3:
return 0 #no need of 3 or more
res.append([x,vy])
res.append(alt)
if x!=y: #isomorphic if x=y, otherwise we also add with 0<->1
interchanged
alt=[1-1 for i in alt]
res.append ([y,x])
res.append(alt)
return 0

#generates all (up to cyclic translation) lists of 0s and 1ls of length n
with no more than three cyclic occurences of 00 and 11, each would
correspond to an edge in H 1 or H 2
#have to call duplicate at all possible "dups" sets, up to cyclic
translation
#let 0O=g 0<=g 1<=...<=g k be the positions to be duplicated
#the positions have values in 0,...,n-k-2
#can assume that the first index g 0=0, and the distance between first
and second g 1-g 0 is smallest cyclically, i.e. g {Jj+1l}-g j>=g 1-g 0O=g 1
#g9 k<=n-k-2 if g 1=0
#g k<=n-k-1-g 1 if g 1>=1
#so we introduce gg=min(l,g 1)
#then g k<=n-k-2+gg-g 1, g {k-1}<=n-k-2+gg-2*g 1, etc.
#g 1<=n-k-2+gg-k*g 1, so g 1<=(n-k-1)/(k+1)
#more than six elements in dups will clearly return empty result, so
k<=5
def enum gen(n):
res = []
duplicate(res, [],n

)
duplicate(res, [0],n-1)
for gl in range (0, (n-2)/2+1):
duplicate(res, [0,gl],n-2)
for gl in range (0, (n-3)/3+1) :

gg=min(1,gl)
for g2 in range(2*gl,n-4+gg-gl):
duplicate(res, [0,g91,92],n-3)
for gl in range (0, (n-4)/4+1):
gg=min (1,91)
for g2 in range(2*gl,n-5+gg-2*gl):
for g3 in range(g2+gl,n-5+gg-gl) :
duplicate(res, [0,91,92,g93],n-4)
for gl in range (0, (n-5)/5+1) :
gg=min (1,91)
for g2 in range(2*gl,n-6+gg-3*gl) :
for g3 in range(g2+gl,n-6+gg-2*gl) :
for g4 in range(g3+gl,n-6+gg-gl) :
duplicate(res, [0,91,92,93,94],n-5)
for gl in range (0, (n-6)/6+1) :



gg=min (1,gl)
for g2 in range(2*gl,n-7+gg-4*gl) :
for g3 in range(g2+gl,n-7+gg-3*gl) :
for g4 in range(g3+gl,n-7+gg-2*gl) :
for g5 in range(g4+gl,n-7+gg-gl) :
duplicate(res, [0,91,92,93,94,95],n-6)
return res

eg = [enum gen(n) for n in range(3,21)]
#srg(76,30,8,14)

p=-4/15

g=7/45

#Gramm matrix of a given double list
def GMat (A) :

n = len (A)
B = Matrix([[gt+t(p—-qg)*A[i][J] for j in range(n)] for i in range(n)])
for 1 in range(n):

B[i,i]=1

return B

#check if positive definite
def mineig (A) :
sp = A.eigenvalues|()

mv = sp[0]
for v in sp:
if v<mv:
mv=v

return mv

fdouble list of incidence of given type and enumeration, ex:[4,16],
[[0,1,..1,101,0,...11
def ttm(type,colors):
res = [[0 for i1 in range(20)] for j in range (20)]
n = len(type)
ind = [0] #indexes for blocks defined by type
k 0
for i in type:
k += 1
ind.append (k)
#generating enumeration
color = [0]*20
for i in range (n):
for j in range(len(colors[i])):
color[ind[i]+j]=colors[i] []]
#all non-edges between diff colors
for 1 in range(19):
for j in range (i+1,20):
if color[i]!=color[j]:
res[i][j]=1



res[j][1i]=1
#inverting edges between H 1 and H 2
for 1 in range(n):
31 = ind[i]

j2 = ind[i+1]-1

res[jl] [j2]=1-res[j1l][j2]

res[j2] [J1l]=1-res[j2][]1]
)

for j in range(jl,3j2
res[j][J+1]=1-res[]j][J+1]
res[j+1][j]l=1-res[j+1][]]

return res

#main loop
html ('<!--notruncate-->")
total graphs = 0
for type in types:
n = len(type)
nn = [len(eg[k-3]1)/2 for k in type]

pp =1
for a in nn:
pp *= a
print "type ", type
ii = [0]*n
fe =0
fr =0
fp = 0
for 1 in range (pp) :
k =1
for j in range(n):
ii[j] = int(k) % int(nn[7j])
k = k//nn[7]
X 0
y =0
for j in range(n):
x += egltype[]J]-3]1[2*1i[]]]1[0]

y += egltypel[j]1-31[2*1i[J]][1]
if x>3 or y>3 or x!=y:
fe += 1
else:
M = GMat (ttm(type, [egltypel[]j]-3][2*1i[j]+1] for j in

range (n) 1))

r = M.rank /()
if r>16:
fr += 1
else:
mev = mineig (M)
if mev<O0:
fp += 1
else:

print "through: ", type, [egltypel[]j]-3]1[2*1i[j]+1] for



j in range(n)],r,mev
print "graphs:", pp-fe
total graphs += (pp-fe)
print "failed by rank:", fr
print "failed by posdef:", fp

print "Graphs (matrices) checked:", total graphs
HHAHHHHH A A A AR HHHHH A

#checking double lists of incidence of given type and enumeration, with
all possibilities of adding 21st vertex, up to 3 edges to each half
def min rank ttma (type,colors):

total graphs = 0

res = [[0 for i1 in range(21)] for j in range (21)]
n = len(type)
ind = [0] #indexes for blocks defined by type
k =0
for i in type:
k += 1

ind.append (k)
#generating enumeration
color = [0]*20
for 1 in range(n):
for j in range(len(colors[i])):
color[ind[i]+7j]=colors[i] [7J]
#all non-edges between diff colors
for 1 in range(19):
for j in range(i+1,20):
if color[i]!=color[j]:
res[i][j]=1
res[j][1i]=1
#inverting edges between H 1 and H 2
for 1 in range(n):
J1 = ind[i]

j2 = ind[i+1]1-1

res[jl] [j2]=1-res[j1l][j2]

res[j2][J1l]=1-res[j2][]1]
)

for j in range(jl,3j2
res[j][j+1l]=1-res[J][]+1]
res[j+1][j]l=1-res[j+1][]]
#no edges
minr = GMat (res) .rank ()
total graphs += 1
#one edge
for i in range (10):
for j in range(10,20):
for ic in range (20) :
res[20] [1ic]=0
res[ic] [20]=0
res[20] [i]=1



res[i][20]=1
res[20] [j]=1
res[j][20]=1
rr = GMat (res) .rank ()

total graphs +=1
if rr<minr:
minr=rr
if rr==16:
print type,colors, i,
#two edges
for i1 in range(9):
for 12 in range(il+1,10):
for j1 in range(10,19):
for j2 in range(jl+1,20):
for ic in range (20) :
res[20] [1ic]=0

res[ic] [20]=0
res([20] [11]=1
res[il] [20]=1
res[20][j1]=1
res[jl][20]=1
res([20][1i2]=1
res[i2][20]=1
res[20] [j2]=1
res[j2][20]=1
rr = GMat (res) .rank ()

total graphs +=1
if rr<minr:
minr=rr
if rr==16:
print type,colors,il,i2,31,32
#three edges
for il in range(8):
for 12 in range(il+1l,9):
for i3 in range(i2+1,10) :
for j1 in range(10,18):
for j2 in range (j1+1,19):
for j3 in range(j2+1,20):
for ic in range (20):
res[20][' ]—O
[20]=

cl[20
1=1
1=1
1=1
1=1
1=1
1=1
1=1
1=1
1=1
1=1



0][33
131 [20]=1
rr GMat (res) .rank ()
total graphs += 1

if rr<minr:

res[20][33]=1
es[]

minr=rr
if rr==16:
print type,colors,il,i2,i3,3j1,32,33
return total graphs, minr

print min rank ttma([(4,4,4,4,41,(10,1,0,1],10,1,0,1],10,1,0,117,
(0,1,0,11,10,1,0,111)
print min rank ttma([(4,4,4,4,4],(10,0,1,1],10,1,0,1],10,1,0,11],
(0,1,0,11,10,1,0,111)
print min rank ttma([(4,4,4,4,4],(10,0,1,1],10,0,1,1],10,1,0,1],
(0,1,0,11,10,1,0,111)
print min rank ttma(([4,4,4,4,4],1(0,0,1,1],(0,0,1,17,(0,0,1,17,
(0,1,0,11,10,1,0,111)

type [20]

graphs: 635

failed by rank: 635
failed by posdef: O
type [3, 17]
graphs: 450

failed by rank: 450
failed by posdef: O
type [4, 16]
graphs: 312

failed by rank: 312
failed by posdef: O
type [5, 15]
graphs: 260

failed by rank: 260
failed by posdef: O
type [6, 14]
graphs: 233

failed by rank: 233
failed by posdef: O
type [7, 13]
graphs: 204

failed by rank: 204
failed by posdef: O
type [8, 12]
graphs: 152

failed by rank: 152
failed by posdef: O
type [9, 11]
graphs: 184

failed by rank: 184
failed by posdef: 0
type [10, 10]



graphs: 145

failed by rank: 145
failed by posdef: 0
type [3, 3, 14]
graphs: 130

failed by rank: 130
failed by posdef: O
type [4, 4, 12]
graphs: 160

failed by rank: 160
failed by posdef: O
type [5, 5, 10]
graphs: 50

failed by rank: 50
failed by posdef: O
type [6, 6, 8]
graphs: 87

failed by rank: 87
failed by posdef: O
type [3, 4, 13]
graphs: 190

failed by rank: 190
failed by posdef: O
type [4, 5, 11]
graphs: 110

failed by rank: 110
failed by posdef: O
type [5, 6, 9]
graphs: 76

failed by rank: 76
failed by posdef: O
type [6, 7, 7]
graphs: 72

failed by rank: 72
failed by posdef: O
type [3, 5, 12]
graphs: 76

failed by rank: 76
failed by posdef: O
type [4, 6, 10]
graphs: 119

failed by rank: 119
failed by posdef: 0
type [5, 7, 8]
graphs: 52

failed by rank: 52
failed by posdef: O
type [3, 6, 11]
graphs: 128

failed by rank: 128
failed by posdef: O
type [4, 7, 9]
graphs: 96

failed by rank: 96



failed by posdef: O
type [3, 7, 10]
graphs: 72

failed by rank: 72
failed by posdef: O
type (4, 8, 8]
graphs: 90

failed by rank: 90
failed by posdef: 0
type [3, 8, 9]
graphs: 84

failed by rank: 84
failed by posdef: O
type [3, 3, 3, 11]
graphs: 82

failed by rank: 82
failed by posdef: O
type [4, 4, 4, 8]
graphs: 98

failed by rank: 98
failed by posdef: O
type [5, 5, 5, 5]
graphs: 14

failed by rank: 14
failed by posdef: O
type [3, 4, 4, 9]
graphs: 88

failed by rank: 88
failed by posdef: O
type [4, 5, 5, 6]
graphs: 42

failed by rank: 42
failed by posdef: O
type [3, 5, 5, 7]
graphs: 26

failed by rank: 26
failed by posdef: 0
type [3, 3, 4, 10]
graphs: 74

failed by rank: 74
failed by posdef: O
type [4, 4, 5, 7]
graphs: 56

failed by rank: 56
failed by posdef: O
type [3, 4, 5, 8]
graphs: 46

failed by rank: 46
failed by posdef: 0
type [3, 5, 6, 6]
graphs: 48

failed by rank: 48
failed by posdef: O
type [3, 3, 5, 9]



graphs: 48

failed by rank: 48
failed by posdef: 0
type [4, 4, 6, 0]
graphs: 93

failed by rank: 93
failed by posdef: O
type [3, 4, 6, 7]
graphs: 64

failed by rank: 64
failed by posdef: O
type [3, 3, 6, 8]
graphs: 62

failed by rank: 62
failed by posdef: O
type [3, 3, 7, 7]
graphs: 42

failed by rank: 42
failed by posdef: O
type [3, 3, 3, 3, 8]
graphs: 58

failed by rank: 58
failed by posdef: O

type [4, 4, 4, 4, 4]
through: (4, , 4, 4,
[OI ll OI l]l OI ll
through: (4, , 4, 4,
[OI ll OI l]l OI 1/
through: [4, , 4, 4,
(¢, 1, o, 11, [0, 1,
through: (4, , 4, 4,
[OI ll OI 1]/ OI 1/

through: [4,
(o0, 1, 0, 11,
through: [4,
(0, 1, 0, 11,

through: [4, , 4, 4,
[OI ll OI 1]/ OI 1/

4 4/ 4/
(0, o, 1, 11, [0, 1,
through: [4, , 4, 4,
[Ol OI 1/ 1]/ OI ll

through: (4,
(o, o, 1, 11,
through: [4,

2
(
4
(
4
[
4
(
4
(
4
[
4
(
through: (4, 4
[
4
(
4
(
4
(0, 0, 1, 11, I
4

[

4

(

4

[

4

[

through: [4, , 4, 4,
[OI ll OI 1]/ OI OI
through: (4, 4, 4, 4,
[Ol ll OI 1]/ OI OI
through: (4, , 4, 4,
(6, 1, o, 11, [0, O,
through: [4, , 4, 4,
[OI ll OI l]l OI OI

~ ~ ~ ~ ~ ~

~

~ ~ ~ ~ ~ ~

PO RPRPOOORrRORrRPRORrRPROOORrRRORrRROOORrRrROOORr oo o
~

~



through: (4, 4, 4, 4, 4]
6, o, 1, 11, [0, O, 1, 1]
graphs: 106

failed by rank: 80
failed by posdef: 10
type [3, 4, 4, 4, 5]
graphs: 50

failed by rank: 50
failed by posdef: 0
type [3, 3, 4, 4, 6]
graphs: 66

failed by rank: 66
failed by posdef: O
type [3, 3, 3, 4, 7]
graphs: 48

failed by rank: 48
failed by posdef: O
type [3, 3, 4, 5, 5]
graphs: 28

failed by rank: 28
failed by posdef: O
type [3, 3, 3, 5, 6]
graphs: 42

failed by rank: 42
failed by posdef: O
type [3, 3, 3, 3, 3, 5]
graphs: 20

failed by rank: 0
failed by posdef: 20
type (3, 3, 3, 3, 4, 4]
graphs: 58

failed by rank: 0
failed by posdef: 58

Graphs (matrices) checked:

(16526, 17)
(16526, 17)
(16526, 17)
(16526, 17)

5526



